
Review Problems for “Applied Functional Analysis”

1. Let M be an inner product space, on which the norm is derived from inner products
via

∥x∥ =
√

⟨x, x⟩.

Prove that for any x, y ∈ M , we have the following Parallelogram identify:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Proof. Note that ∥x+ y∥2 = ⟨x+ y, x+ y⟩ and ∥x− y∥2 = ⟨x− y, x− y⟩. We have

∥x+ y∥2 + ∥x− y∥2 = ⟨x+ y, x+ y⟩+ ⟨x− y, x− y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩+ ⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩+ ⟨y, y⟩
= 2⟨x, x⟩+ 2⟨y, y⟩
= 2 ∥x∥2 + 2 ∥y∥2 .

Done! �

2. On C2, define two norms as

∥(x, y)∥1 =
√

|x|2 + |y|2 and ∥(x, y)∥2 = |x|+ |y|.

Prove that these two norms are equivalent. In other words, prove that there exist 0 < C1 <
C2, such that for all (x, y) ∈ C2 ,

C1 ∥(x, y)∥2 ≤ ∥(x, y)∥1 ≤ C2 ∥(x, y)∥2 .

Proof. As
√

|x|2 + |y|2 ≤ |x|+ |y|, we have

∥(x, y)∥1 ≤ ∥(x, y)∥2 , ∀ (x, y) ∈ C2.

Note that
√
|x|2 + |y|2 ≥ |x| and

√
|x|2 + |y|2 ≥ |x|, we get√

|x|2 + |y|2 ≥ (|x|+ |y|)/2, ∀ (x, y) ∈ C2.

In other words, we have
1

2
∥(x, y)∥2 ≤ ∥(x, y)∥1 , ∀ (x, y) ∈ C2,

which finishes the proof.
�
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3. Prove that l1 = {(x1, x2, · · · ) :
∑∞

i=1 |xi| < ∞} is not an inner product space. In other
words, show that the norm on l1, which is defined as

∥x∥ =
∞∑
i=1

|xi|,

is not a norm derived from certain inner product.

Proof. In order to show that this norm is not a norm derived from certain inner product, we
just need to check that the parallelogram fails for certain x, y ∈ l1.

Let x = (1, 0, 0, 0, · · · ) and let y = (0, 1, 0, 0, · · · ). Then x + y = (1, 1, 0, 0, · · · ) and
x− y = (1,−1, 0, 0, · · · ). Easy to check that

∥x∥ = 1, ∥y∥ = 1, ∥x+ y∥ = 2, and ∥x− y∥ = 2.

But we don’t have
22 + 22 = 2(12 + 12),

which finishes the proof. �

4. On C2, for any x = (x1, x2) and y = (y1, y2), define ρ(x, y) = |x1 − y1|2 + |x2 − y2|2.
Prove that ρ is not a metric on C2 (thus it cannot be a norm on C2).

Proof. We will check against the triangle inequality, showing that it does not always hold
true, which will then suffice for the proof.

Let x = (x1, x2) = (0, 0), y = (y1, y2) = (1, 1) and let z = (z1, z2) = (2, 2). We can check
that

ρ(x, y) = (1− 0)2 + (1− 0)2 = 2

ρ(x, z) = (2− 0)2 + (2− 0)2 = 8

ρ(y, z) = (2− 1)2 + (2− 1)2 = 2.

As
ρ(x, z) > ρ(x, y) + ρ(y, z),

the triangle inequality does not hold for this ρ. Thus ρ is not a metric on C2. �

5. Define
Cb(R) = {f ∈ C(R) : sup

x∈R
|f(x)| < ∞}.

For any f ∈ C(R), define its norm to be

∥f∥ = sup
x∈R

f(x).

Prove that (Cb(R), ∥∥) is a normed space, but NOT an inner product space.
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Proof. For any f, g ∈ Cb(R) and λ ∈ R, easy to check that

∥f∥ = 0 if and only if f = 0

and
∥λf∥ = |λ| · ∥f∥ .

It remains to show that ∥f + g∥ ≤ ∥f∥+ ∥g∥ . In fact, for all x ∈ R

|(f + g)(x)| = |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ sup
x∈R

|f(x)|+ sup
x∈R

|g(x)|,

which then implies that

∥f + g∥ = sup
x∈R

|(f + g)(x)| ≤ ∥f∥+ ∥g∥ .

Now, we will show that this norm can not be derived from any inner product. It suffices
to show that the parallelogram identity does not hold.

Let

f(x) =

 1 x ∈ [1,∞)
x x ∈ (−1, 1)
−1 x ∈ (−∞,−1]

.

One can check that

∥f∥ = 1, ∥1∥ = 1, ∥f + 1∥ = 2, and ∥f − 1∥ = 2,

and we don’t have
∥f + 1∥2 + ∥f − 1∥2 = 2(∥f∥2 + ∥1∥2).

�

6. On C2, define the norm of
(
x
y

)
∈ C2 to be ∥(x, y)∥ =

√
x2 + y2 . For a 2 × 2 matrix,

regard it as an linear operator on C2 defined as(
a b
c d

)
·
(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Prove that this linear operator
(
a b
c d

)
is a bounded linear operator, and the operator norm

satisfies ∥∥∥∥(a b
c d

)∥∥∥∥ ≤ |a|+ |b|+ |c|+ |d|.

Proof. Just need to show the following: for any x, y ∈ C with |x|2 + |y|2 ≤ 1,

|ax+ by|2 + |cx+ dy|2 ≤ (|a|+ |b|+ |c|+ |d|)2.
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Note that 2|x||y| ≤ |x|2 + |y|2 ≤ 1, we have
|ax+ by|2 + |cx+ dy|2 = |a|2 + 2|x||y||a||b|+ |b|2 + |c|2 + 2|x||y||c||d|+ |d|2

≤ |a|2 + |a||b|+ |b|2 + |c|2 + |c||d|+ |d|2

≤ |a|2 + |b|2 + |c|2 + |d|2 + 2|a||b|+ 2|c||d|
+ 2|a||c|+ 2|a||d|+ 2|b||c|+ 2|b||d|

= (|a|+ |b|+ |c|+ |d|)2.
�

7. This is about finding a basis for finite dimensional Hilbert spaces, and about the
properties of such basis.

On R2, define the inner product as
⟨x, y⟩ = x1y1 + x2y2, ∀x, y ∈ R2, with x = (x1, x2) and y = (y1, y2).

It is easy to check that R2 is a Hilbert space under this inner product. Assume we have
e1 = (3

5
, 4
5
) . Easy to check that ∥e1∥ = 1.

a) Find e2 ∈ R2 such that
∥e2∥ = 1 and ⟨e1, e2⟩ = 0.

b) For the e1, e2 we have so far, prove that for any x ∈ R2,
∥x∥2 = ⟨x, x⟩ = ⟨x, e1⟩2 + ⟨x, e2⟩2.

Solution:

a) First, we try to find x ∈ R2 that is not in the linear span of e1.
Choose x = (1, 0). It is clear that x /∈ {λe1 : λ ∈ R}. Let

y = x− ⟨x, e1⟩e1

= (1, 0)−
⟨
(1, 0), (

3

5
,
4

5
)

⟩
· (3
5
,
4

5
)

= (1, 0)− (
9

25
,
12

25
)

= (
16

25
,−12

25
).

To get e2, we just need to normalize y. That is, set

e2 =
y

∥y∥
=

(16
25
,−12

25
)√

(16
25
)2 + (−12

25
)2

=
(16
25
,−12

25
)

4
5

= (
4

5
,−3

5
).

b) The proof is just straightforward verifications.


